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A theory of the nonisothermal deformation of metals was developed in [i]. This theory 
also describes the deformation of a loaded body in the case of temperature oscillations. 
Below, we use this theory to analytically describe irreversible deformation due to the ther- 
mocycling of a metallic specimen which is free of external laods. 

i. Growth Coefficient. Experiment and Theory. The relative irreversible (plastic) 
deformation in one complete cycle of thermal loading will be referred to as the growth co- 
efficient y, in accordance with [2]. As was noted in [2], about 10-20 cycles are usually 
sufficient for ~ to assume a steady value. In addition, since it rarely exceeds 5.10 -S I/ 
cycle, then the relative change in dimensions after this number of cycles will be no greater 
than 0.1%. Thus, it does not make sense to consider the dependence of the shape change 
on the number of previous cycles when the specimen is subjected to several thousand or tens 
of thousands of thermal cycles and undergoes a dimensional change of tens or hundreds of 
percent. 

An analysis of numerous experiments led the authors of [2] to the conclusion that ~ is 
determined mainly by the temperature interval and region and the time the specimen spends at 
the upper and lower temperatures of the interval. Given sufficiently rapid thermal cycling, 
it is almost independent of the heating and cooling rate. In any case, the rate of cycling 
is not the main determining factor, since it can be ignored in calculations and the change 
in temperature can be assumed to be instantaneous. 

Equations (6.5) and (6.6) obtained in [I] are reproduced below: 

Sl Ar (i. i) 

where s p, s~, s~ are the total plastic strain and the plastic strains at the beginning and 
end of the temperature jump, respectively; AT is the instantaneous increment in temperature; 
t is time; B, K, ~, 6, and c are material constants. 

In accordance with these formulas, the instantaneous change in the temperature of a 
specimen, in the form of a thin-walled cylindrical tube, which is free of external loads and 
is textured when subjected to uniaxial loading results in the plastic strain 

In accordance with (1.3), at the moment of the temperature jump (t = 0, AT ~ 0), strain in- 
creases to a finite value ATB/c. Then, at At ~ 0, AT = 0, there is a further increase in 
strain at a decaying rate. This is consistent with the experimental data [2]. Let one com- 
plete thermal cycle consist of an instantaneous increase in temperature, holding at a fixed 
maximum temperature, an instantaneous decrease in temperature, and holding at a constant 
minimum temperature. In this case, (1.3) describes the increment in strain during a thermal 
half-cycle (jump in temperature and its holding at the new level). Assuming that in the 
second half-cycle the strain increment obeys the same law as in the first half-cycle, we write 
the growth coefficient as follows in accordance with (1.3) 

= A[ t  + D(i  . expi--rt))l[AT [ ( 1 . 4 )  

(A is a parameter of the material; D and r are constant coefficients). 
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It follows from [i] that A may depend on the temperature interval and on the absolute 
values of the upper and lower temperatures of the cycle. Thus, A can be found from a ther- 
mocycling experiment without holds at the upper and lower cycle temperatures, i.e., with the 
thermal cycles occurring instantaneously. In this case, D = 0 in (1.4). This means that 

Yi = AIATI. 

In the experiments described in the literature, the lower temperature of the cycle is 
generally kept constant while the upper temperature is changed [2]. Nearly exponential 
temperature dependences of ~ have been obtained. It was shown in [2] that for thermally 
activated materials (by which we mean polycrystalline aggregates) the form change during 
thermal cycling occurs due to anisotropy of the coefficient of thermal expansion (uranium, 
zinc, cadmium, tin, etc.). Complete agreement with the test data is obtained if we assume 
that A depends on the dispersion of the activation energy and the upper temperature of the 
cycle: A = aexp (-AQ/(RT)), so that 

? i  = a exp [--AQ/(BT~)lJATI; (1.5) 
? = a exp [--AQf(BT~)][t + D(l  ~ exp (--rt))]lAT I. ( ! . 6 )  

Here, a is a constant coefficient; hQ is the dispersion of activation energy; R is the uni- 
versal gas constant; T I is the upper (maximum) temperature of the cycle. 

We find the constant coefficients D and r from the experimentally determined change in 
in relation to the hold at fixed T I. This increment ~ is represented by the difference in 

its values in Eqs. (1.5) and (1.6) 

A? = Da exp [ 'AQ/(BT1)][I  --  exp (--rt) l lATI.  ( 1 . 7 )  

2. Growth Coefficient of Zinc. The formulas obtained above will be used to describe 
the growth coefficient of a typical representative of thermally anisotropic materials - zinc. 
Experimental data on the dependence of 7 for zinc on the factors mentioned in Part 1 was 
presented in [3]. It follows in particular from this information that without a hold at a 
fixed temperature (T l = 533 K and AT = 250 K) ~i = 4"i0-~ i/cycle. Inserting this value into 
(1.5) and considering that AQ = 3.5 kcal/mole for zinc, we find a = 4.3.10 -6 i/(K.cycle). 
The changes obtained experimentally [3] for ~ due to holds at fixed T I are described well 
by Eq. (1.7) at D = 2.125 and r = 9.87.10 -~ sec -I 

Thus, the theoretical formula takes the form 

? = 4,386-  ~0-6exp (--764,74/T1)[{ + 2A55(i  - -  exp(--9~87 �9 10-~t))]lATI. ( 2 . 1 )  

Having used this formula, we can analytically describe the plastic strain of a thin- 
walled zinc tube which is free of external loads while being subjected to thermal cycles in 
the temperature range 283-483 K with different holds in the high-temperature zone (T I = 
const): I) at t I = 120 sec, T I = 483 K and AT = 200 K from (1.8) ~x = 5.622"i0-s i/cycle; 2) 
at t 2 = 600 sec, T I = 483 K and AT = 200 K from (1.8) 72 = 9.085"i0-s i/cycle. If we multi- 
ply ~i and u by the corresponding number of cycles N, we obtain the strain with holds t I = 
120 sec (line 1 in Fig. i) and t 2 = 600 sec (line 2). The points and x' show the test re- 
sults reported in [2]. 

Let us also examine the dependence of u on the temperature interval in the case when 
the hold at the upper cycle temperature is long enough for all relaxation processes to occur 
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during this time. It follows from Eq. (2.1) that a hold of 15-20 min at fixed T I is suf- 
ficient. Let us study the case t, = 20 min. We take the following temperature intervals: 
AT = I00, 200, and 300 K. As in the experiments in [3], we take the same value for the 
lower temperature in all of the cycles: T o = 283 K. Then T I = 383, 483, and 583 K for all 
of the chosen temperature intervals. Inserting the values of T I and AT into Eq. (2.1) at 
t = t, = 1200 sec, we obtain the corresponding growth coefficients: 71 = 1-37"i0-s, 72 = 
7.1"10 -5 , 7~ = 20 "10-5 i/cycle. 

A line is drawn through the theoretical values of the growth coefficient in Fig. 2. 
The experimental results are shown by points. The positions of the points shows that the 
results obtained theoretically agree completely with the experimental data. 
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There is no literature data on the properties of filled elastomers under shock-loading 
conditions. Despite this, rubber-like materials are used to damp pulses from shock compres- 
sion and to solve other practical problems. The behavior of such materials under normal 
conditions is distinguished by several specific features [I, 2]; it is interesting to deter- 
mine the degree to which these features of filled elastometers are manifest during intensive 
shock loading. 

The present article reports results of the recording of the shock compression, unloading, 
and dynamic tension of vacuum-treated white rubber of grade 7889. 

The specimens were cut from a sheet 1 cm thick. The measured density of the specimens 
was 1.34 g/cm 3. The speed of sound at atmospheric pressure was 1.5 km/sec. Tests in simple 
tension conducted at a rate of 10-2-10 -3 sec -I showed that the initial Young's modulus of the 
rubber lies within the range 2-3 MPa, while the true breaking stress S n = 88 MPa. At the 
moment of rupture, the relative elongation of the working part of the specimen was 609%. The 
permanent set after rupture was about 10%. 

Plane shock waves (SW) were created in the specimens by strikers 2-7 mm thick made of 
aluminum or organic glass, as well as by the explosive detonation of lenses in direct con- 
tact with the specimen. The strikers were propelled by explosive devices described in 
[3, 4]. The pressure associated with the shock compression was varied by changing the 
velocity of the strikers and by using shields with different dynamic stiffnesses. The 
shields were placed between the striker and the specimen. We used manganin transducers to 
record the pressure profile P(t) in the specimen at the boundary with the shield and at a 
prescribed distance from it. We also used the method of Doppler laser interferometry [5, 6] 
to record the velocity profiles of the rear surface of the specimens u(t) in cases when the 
pressure pulse exited into a barrier with a low dynamic stiffness or into air. 

Figure 1 shows results of measurements of the evolution of pressure profiles 1-4 in the 
rubber. These results are for the loading conditions shown in Table i. No qualitative fea- 
tures connected with the specific properties of the rubber were seen on the P(t) profiles 
in the investigated range of pressures from 2 to 6 GPa. The incompleteness of the unloading 
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